
x86-64 Assembler

Our compilers will generate assembly-language code, which we
will turn into executable binaries with the gnu asssembler.

 By convention we will use the .s suffix for an assembly-
language file. You assemble file foobar.s into the executable file
s with the command
 gcc foobar.s -o foo
We will be using some C library functions for input and output;
gcc will automatically link the C libraries to your program.

If you want to see what assembly code gcc generates for a
particular piece of C code, put the code in file foo.c and compile
it with gcc -S foo.c; the compiler will produce file foo.s

The gnu assembler uses an old AT&T (ie Bell Labs) format for
instructions:

 instruction source destination

The assembler is case-insensitive; it doesn't matter if you say MOVL
or movl.

The instruction names generally end with a length-specifier:
 Q -- quadwords (8 bytes or 64 bits)
 L -- longwords (4 bytes or 32 bits)
 W -- words (2 bytes or 16 bits)
 B -- bytes (8 bits)

You will probably not use anything lengths but Q and L.

Addresses in this system are all 64 bits. Integers are 32 bits,
though you may find it more convenient to pretend that integers
are 64 bits, which means that almost every instruction you
generate involves a quadword.

There are 16 64-bit registers. Most allow you to work with only
the lower 32-bits, so each register has 2 names: a %r-name for
the full 64 bits and an %e-name for the lower 32-bits.

Note that the %-e names were the names of the 32-bit registers
in the old x86-32 architecture.

Register Lower half Purpose

%rax %eax This is general purpose, but many people treat it as an “accumulator”, where the results

of calculations go. The Intel programming conventions call for return values to be placed

in rax before returning.

%rsp %esp, which

you should

never use

This is the stack pointer. It points to the top element currently on the stack. The stack

grows towards smaller addresses, so a push operation decrements rsp. You can allocate

local variables by decrementing rsp yourself, and pop the stack by incrementing rsp.

%rdi %edi This is general purpose. The Intel conventions call for the first argument for a function

call to be passed in rdi. We will do this only when calling C routines, but you should be

careful about trashing this register.

%rsi %esi The conventions call for the second argument to be passed in rsi.

%rdx %edx The third argument.

%rcx %ecx The fourth argument.

%r8 %r8d The fifth argument.

%r9 %r9d The sixth argument

%r12 %r12d This is undesignated, and not used by the C-compiler.

%rbx %ebx These registers are designated “callee saved” in the conventions. This means that if you

are using them you should save their prior values, and restore those values when you are

done with them.
%rbp %ebp

%r10 %r10d

%r13 %r13d

%r14 %r14d

%r15 %r15d

%r11 %r11d This is used for linking. I would avoid using it.

Addressing modes: We will primarily use 3 simple addressing
modes:

Register mode: the operand is the name of a register. For
example

 movq %rsp, %rax
 which puts the stack pointer into register %rax.

Indirect mode: the operand is the value stored in a memory

location, which is specified by an offset from the value in a
register. For example

 movl %eax, 8(%rsp)
 This moves the 32 bits stored in %eax (the lower half of %rax)

to the stack, 8 bytes below the top of the stack (the stack
"grows" towards smaller addresses).

Immediate mode: The operand is a number, which is preceeded
by a $:

 movl $23, %eax
puts the literal number 23 into %eax.

You will occasionally use a fourth mode for labels:

Direct mode: The operand is specified by a symbol in the
program. For example

 call f
 Here f must be a label at the start of a function.
 For another example
 jmp .L0
 is an unconditional branch to label .L0

Data Instructions
MOVL, MOVQ: move 32 or 64 bits from the source to the

destination. For example
 movl $23, %eax puts 23 into the 32-bit register %eax
 movq %rsp, %rax puts the stack pointer into %rax
LEAQ loads the "effective address" of the source into the

destination. The data is an address so you want the Q-mode.
For example

 leaq 8(%rsp), %rax
 puts the address 8 bytes below the top of the stack into %rax.

You could just as easily do this as
 movq %rsp, %rax
 addq 8, %rax

CLRL, CLRQ loads 0 into the 32-bit or 64-bit destination
 clrl %eax puts 0 into %eax
 clrq 0(%rsp) changes the top of the stack to 0

PUSH decrements $rsp by 8 bytes and puts the source data at

this location.
 push $23 pushes the number 23 onto the stack
 Note that if you want to have 3 64-bit local variables allocated

on the stack, you could do this with
 push $0
 push $0
 push $0
 which initializes them to 0, or with
 subq $24, %rsp
 which makes room for them on the stack but doesn't initialize

them.

POP puts the 8 bytes at the top of the stack into the
destination and increments %rsp by 8.

 pop %rax pops the stack into %rax
 Before you leave a function call you will need to pop the

local environment off the stack. This is usually more easily
accomplished by incrementing %rsp than by issuing the
right number of pop instructions.

Branches
jmp label is an unconditional jump to the label

There are 7 conditional branches: je, jne, jl, jle, jg, jge, jz. These
all act on the value of the condition codes in the processor.
Most arithmetic instructions set the condition codes, so if you
are sure that the previous instruction was an arithmetic
operation you might follow it immediately with a conditional
branch. In most situations it is safer to do a comparison with
CMP and then follow it with the conditional branch. The
sequence

 cmpl $8, %eax
 jle L2
will branch to label L2 if the value in register %eax is less than or
equal to 8. Note that this is backwards of the way most people
would read this.

Calls
call F pushes the instruction pointer (the address of the next

instruction; this is in register %RIP) and branches to label F.

return pops the stack into the instruction pointer register

%rip.

Note that both call and return are minimalist instructions. Call

does nothing with arguments or with local variables. We
will have a set of conventions for calling that I call the "run-
time environment". These will say where arguments go,
who puts them there and who gets rid of them. Note also
that return assumes that anything the called function has
put on the stack has been popped off, so that the return
address is at the top of the stack when you are ready to
return.

Arithmetic
ADDL, ADDQ adds 32-bit or 64-bit data
SUBL, SUBQ subtracts 32-bit or 64-bit data.
Both of these work by adding or subtracting the source and
destination values, leaving the result in the destination:
 addl $8, %eax increments %eax by 8

64-bit multiplication is weird; I at least failed to make sense out
of the documentation for it.

IMUL does 32-bit multiplication in ways you expect:
 imul 0(%rsp), %eax multiplies the value in %eax by
the value at the top of the stack.

The basic division operation is set up to divide 128 bits, stored in
two registers, by 64 bits stored in one. If the dividend is negative
we need to “sign-extend” it to fill up the rest of its 128 bits with
copies of the sign bit (0’s for positive dividends, 1’s for negative
dividends). Here is a sequence of steps that makes it work:

a) Put the divisor into ebx.
b) Put the dividend (the number being divided into) into eax.
c) Do a cltq instruction (with no operands) to sign-extend it to

all of rax. cltq stands for “convert long to quad” – a
“longword”is 32 bits, a quadword” is 64.

d) Do a cqto instruction (with no operands) to sign-extend it to
rdx. cqto stands for “convert quadword to octword.”

e) Do a idivl instruction, whose only argument is the divisor
ebx. The quotient is put into eax, and the remainder (for a
mod or % operation) is put into edx.

For example,
movl $7, %ebx
movl $23, %eax
cltq
cqto
idivl %ebx

the result leaves the quotient, 3 in eax and the remainder, 2 in edx

Assembler directives

.comm is used to allocate read/write memory. The format for
it is

 .comm label, bytes-allocated, alignment
 as in
 .comm X, 40, 32
 We will use this to allocate global variables and arrays.

.section .rodata
 This allocates read-only memory, where C expects to find string

constants. At a minimum you will define strings in this section
for working with the scanf and printf functions for I/O. Here is
a section that has two strings, one named .WriteIntString and
one named .Bob:

 .section .rodata
 .WriteIntString: .string "%d"
 .Bob: .string "Compilers are Fun!"

.text
 This indicates the start of the text (i.e. code) segment of the

program. You typically have the data segments (.comm and
.rodata) first, then the text segment.

.globl is used to indicate that a symbol in the program has global
scope. We are using gcc to link our program to C-libraries.
This will assume that the program has (like all C programs) a
main() function. The start of your executable program should
have a global main label:

 .globl main

